

COMPSCI 389 Introduction to Machine Learning

Gradient Descent

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Optimization Perspective

• Recall:

$$\operatorname{argmin}_{w} L(w, D)$$

- Viewing L(w, D) as a function, f, of just the weights (and a fixed data set): $\operatorname{argmin}_{w} f(w)$
- Note that this is equivalent to maximizing a different function, where g=-f argmax $_w g(w)$
- We could also write x instead of w:

$$\operatorname{argmin}_{x} f(x)$$

- The function being optimized (minimized or maximized) is called the **objective function** (optimization terminology).
 - In this case, our objective function is a loss function (machine learning terminology).
- Question: How do we find the input that minimizes a function?

Local Search Methods

- Start with some initial input, x_0
- Search for a nearby input, x_1 , that decreases f:

$$f(x_1) < f(x_0)$$

• Repeat, finding a nearby input x_{i+1} that decreases f (for each iteration i):

$$f(x_{i+1}) < f(x_i)$$

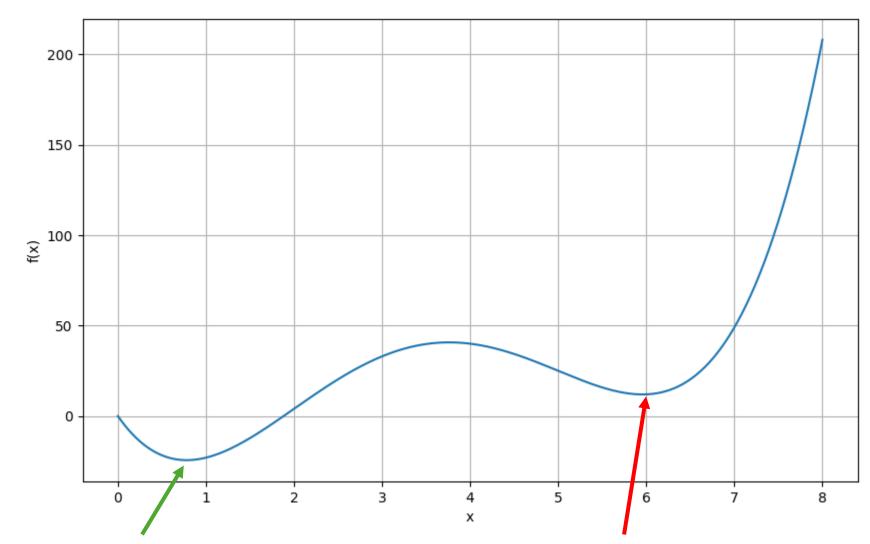
- Stop when:
 - You cannot find a new input that decreases f
 - The decrease in f becomes very small
 - The process runs for some predetermined amount of time
- Called "local search methods" because they search locally around some current point, x_i .

"Find a nearby point that decreases f"

- We will consider gradient-based optimizers.
- At any input/point x, we can query:
 - f(x): The value of the objective function at the point
 - $\frac{df(x)}{dx}$: The derivative of the objective function at the point
 - This is the **gradient**, and is also written as $\nabla f(x)$

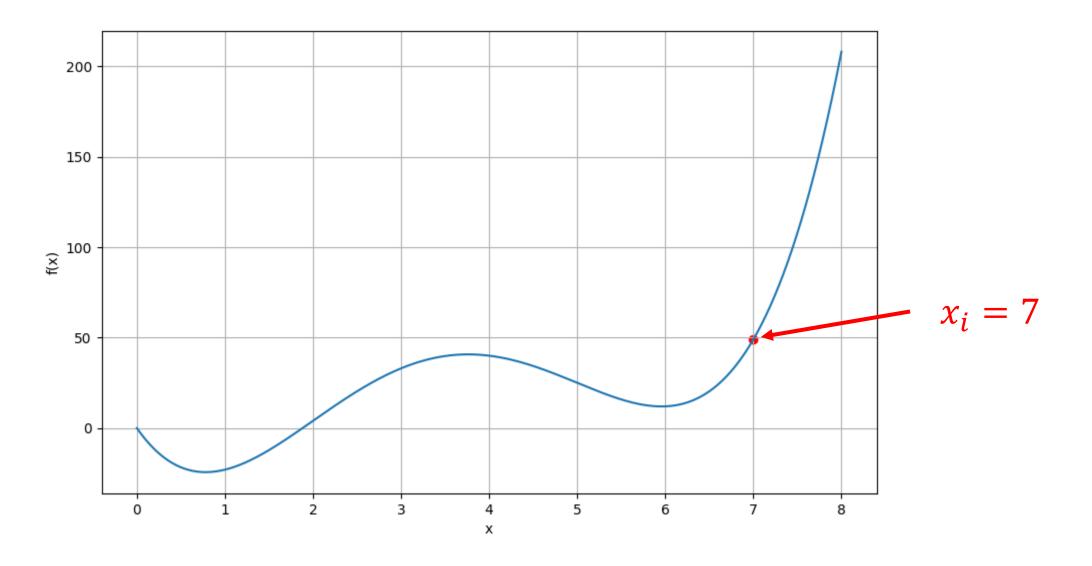
Question: Is a global minimum a local minimum?

Answer: Yes!

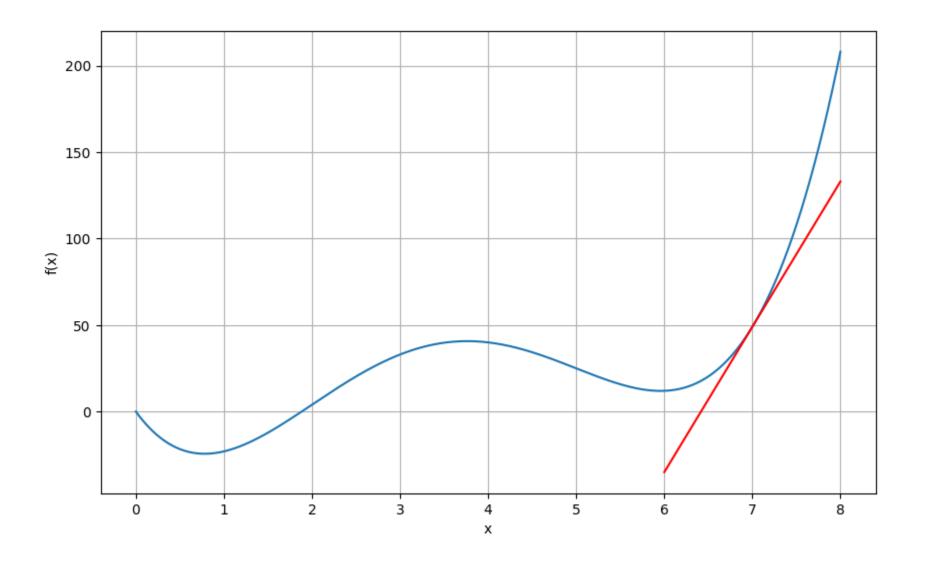


Global minimum: A location where the function achieves the lowest value (the argmin).

Local minimum: A location where all nearby (adjacent) points have higher values.

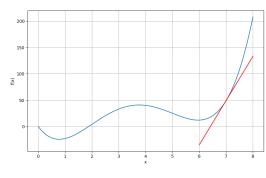


Question: How can we find a point x_{i+1} such that $f(x_{i+1}) < f(x_i)$? That is, a point that is "lower"? 6 Idea: Move a small amount "downhill"



Notice: The slope of the function tells us which direction is uphill / downhill.

Positive slope: Decrease x_i to get x_{i+1} . **Negative slope**: Increase x_i to get x_{i+1} .



• Take a step of length α (a small positive constant) in the opposite direction of the slope:

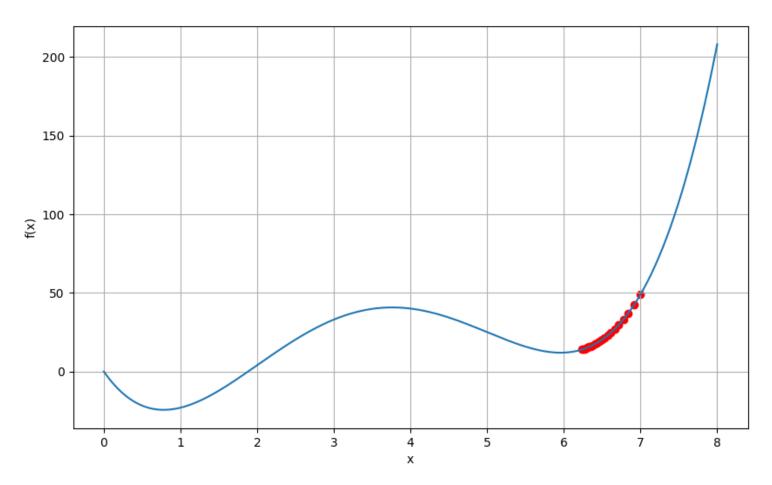
$$x_{i+1} = x_i - \alpha \times \text{slope}.$$

• Note: The slope is $\frac{df(x)}{dx}$, so we can write: $x_{i+1} = x_i - \alpha \frac{df(x)}{dx}.$

$$x_{i+1} = x_i - \alpha \frac{df(x)}{dx}.$$

• α is a hyperparameter called the **step size** or **learning rate**.

Gradient descent,
$$x_0 = 7$$
, $\alpha = 0.001$
 $f(x) = x^4 - 14x^3 + 60x^2 - 70x$

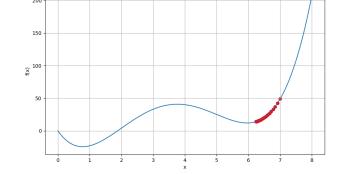


Question: Why do the points get closer together when we use the same step size, α ?

Why do the points get closer together when

we use the same step size, α ?

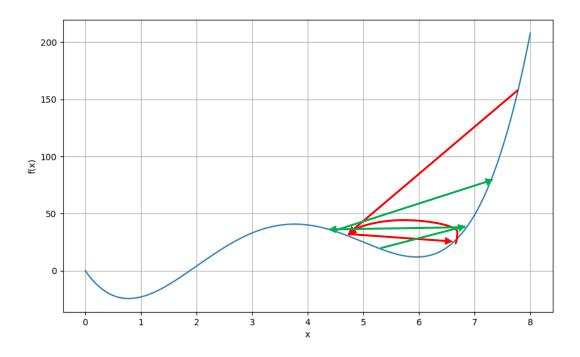
$$x_{i+1} = x_i - \alpha \frac{df(x)}{dx}$$



- As x_i approaches a local optimum, the slope goes to zero.
- This allows for "convergence" to a local optimum.
- Gradient descent can still overshoot the (local) minimum.
- If the step size is small enough (or decayed appropriately over time), gradient descent is guaranteed to converge to a local minimum.
 - If it overshoots a minimum by a small amount, it will reverse direction and move back towards the minimum.

Overshooting and Divergence

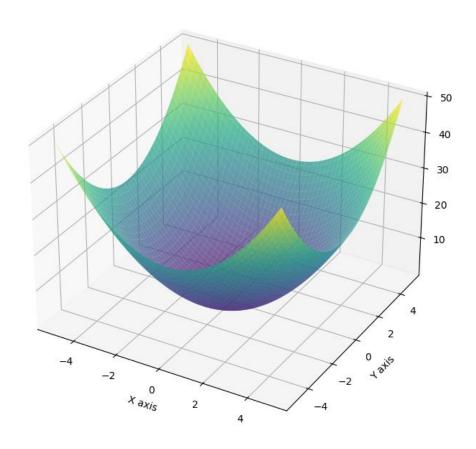
• If the step length was constant and too big, it could forever overshoot the (local) minimum, diverging or oscillating (not making progress towards the local minimum).



Multidimensional Gradient Descent

- What if the function, f, takes many inputs?
 - Our loss function, L(w,D) takes the weight vector w as input
 - We view *D* as fixed.
 - For now, consider a function f(x, y), where x and y are two real numbers.

$$f(x,y) = x^2 + y^2$$



Consider the point (3,3)

Question: How can we find a new point that is "downhill"?

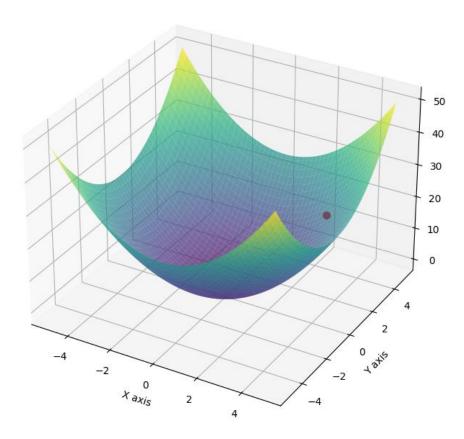
Idea: Compute the slope along each axis!

x-slope:
$$\frac{\partial f(x,y)}{\partial x}$$

y-slope: $\frac{\partial f(x,y)}{\partial y}$

The **gradient** is the concatenation of the slopes along each dimension/axis:

$$\nabla f(x) = \left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y} \right]$$



The Gradient

Question: How can we find a new point that is "downhill"?

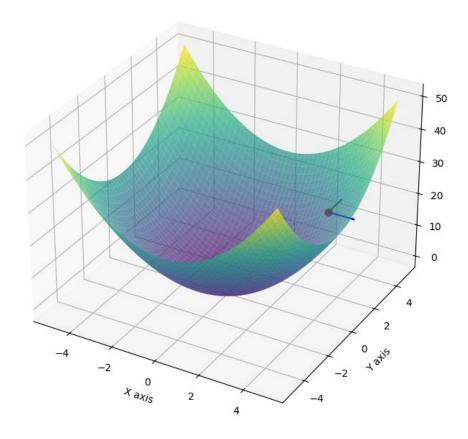
Idea: Compute the slope along each axis!

x-slope:
$$\frac{\partial f(x,y)}{\partial x}$$

y-slope: $\frac{\partial f(x,y)}{\partial y}$

The **gradient** is the concatenation of the slopes along each dimension/axis:

$$\nabla f(x) = \left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y} \right]$$



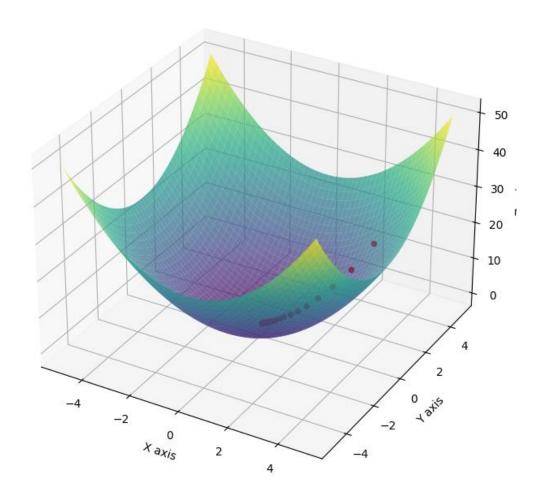
Note: The gradient is also called the "direction of steepest ascent". It indicates how to change each input to go up-hill as quickly as possible.

Gradient Descent: Move both x and y in the negative direction of their slopes. That is, move in the opposite direction of the gradient:

$$\begin{aligned} x_{i+1} &= x_i - \alpha \frac{\partial f(x_i, y_i)}{\partial x_i} \\ y_{i+1} &= y_i - \alpha \frac{\partial f(x_i, y_i)}{\partial y_i} \\ \text{OR} \\ (x_{i+1}, y_{i+1}) &= (x_i, y_i) - \alpha \nabla_{t} f(x_i, y_i) \end{aligned}$$

Gradient Descent on $f(x, y) = x^2 + y^2$ $(x_0, y_0) = (3,3), \alpha = 0.7$

Gradient Descent on 3D Surface



Pseudocode: Gradient Descent on f(x)

- **Hyperparameter**: Step size α . Typically a small constant like 0.1, 0.01, 0.001, ...
- **Assumption**: *f* is a function that takes a vector (or single real number) as input and produces a single real number as output.
- **Assumption**: *f* is smooth (differentiable)
- Method:
 - Select an arbitrary initial point, x_0 (a vector).
 - For each iteration i, set $x_{i+1} = x_i \alpha \nabla f(x_i)$. Equivalently, for each element of x_i (indexed by j):

$$x_{i+1,j} = x_{i,j} - \alpha \frac{\partial f(x_i)}{\partial x_{i,j}}$$

Stop when progress becomes slow or after some fixed amount of time.

Gradient Descent: Adaptive Step Sizes

- Tuning the step size, α , can be challenging.
- Adaptive step size methods measure properties of the function over time to adapt the step size automatically.
 - Many methods (ADAGRAD, ADAM, etc.)
 - Some change not only the length of the step, but also the *direction* of the step!
 - Details beyond the scope of this course.

Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)

$$\operatorname{argmin}_{w} L(w, D)$$

- Initialize w_0 arbitrarily.
- Iterate:

$$w_{i+1} \leftarrow w_i - \alpha \frac{\partial L(w_i, D)}{\partial w_i}$$

• Equivalently, for each weight (indexed by j):

$$w_{i+1,j} \leftarrow w_{i,j} - \alpha \frac{\partial L(w_i, D)}{\partial w_{i,j}}$$

• To implement this, we need to know $\frac{\partial L(w_i,D)}{\partial w_{i,j}}$

What is $\frac{\partial L(w_i,D)}{\partial w_{i,i}}$?

 $\frac{\partial}{\partial w_{i,j}} \sum_{i',j'} w_{i,j'} \phi_{j'}(x_{i'}) = \frac{\partial}{\partial w_{i,j}} w_{i,j} \phi_{j}(x_{i'}) = \phi_{j}(x_{i'})$

$$L(w_i, D) = \frac{1}{n} \sum_{i'=1}^{n} \left(y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right)^{\frac{1}{2}}$$

Question: Why $\Sigma_{j'}$ rather than Σ_{j} ?

Answer: We already used the symbol *j* to denote the weight we are taking the derivative with respect to. So, we use a different symbol for the index of the summation.

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{1}{n} \sum_{i'=1}^{n} \frac{\partial}{\partial w_{i,j}} \left(y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right)^{2}$$

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{1}{n} \sum_{i'=1}^{n} 2 \left(y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right) \frac{\partial}{\partial w_{i,j}} \left(y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right)$$

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i'=1}^{n} 2 \left(y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right) \frac{\partial}{\partial w_{i,j}} \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'})$$

$$\frac{\partial L(w_{i}, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i'=1}^{n} 2 \left(y_{i'} - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_{i'}) \right) \phi_{j}(x_{i'})$$

20

Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)

For each weight (indexed by j):

$$w_{i+1,j} \leftarrow w_{i,j} - \alpha \frac{\partial L(w_i, D)}{\partial w_{i,j}}$$

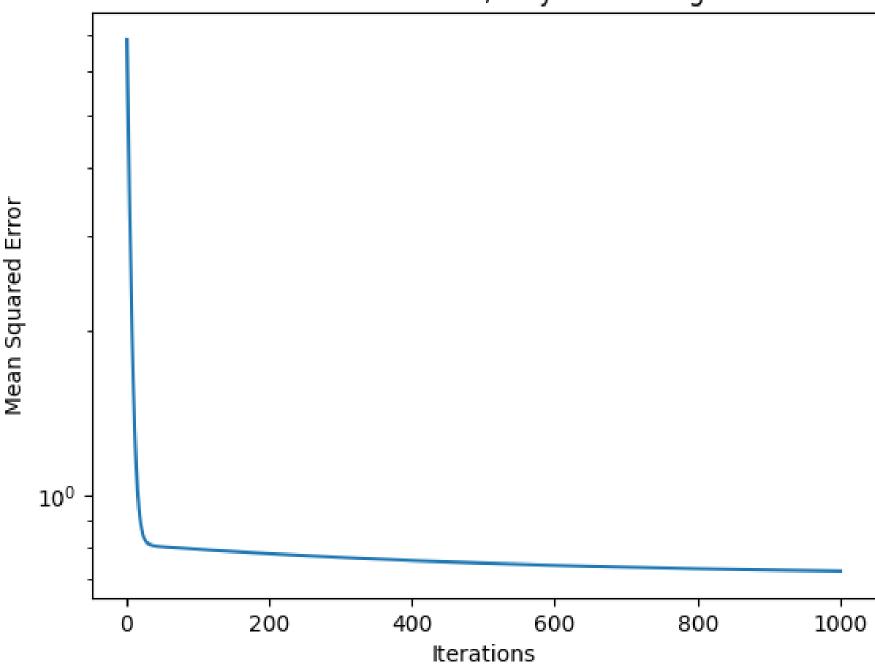
• Where:

$$\frac{\partial L(w_i, D)}{\partial w_{i,j}} = \frac{-1}{n} \sum_{i=1}^{n} 2 \left(y_i - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_i) \right) \phi_j(x_i)$$

• So, for each weight (indexed by *j*);

$$w_{i+1,j} \leftarrow w_{i,j} + \alpha \frac{1}{n} \sum_{i=1}^{n} 2 \left(y_i - \sum_{j'=1}^{d} w_{i,j'} \phi_{j'}(x_i) \right) \phi_j(x_i)$$

Gradient Descent Loss, Polynomial Degree: 2



Iteration 0/1000, Loss: 8.4351	Iteration 16/1000, Loss: 1.0097
Iteration 1/1000, Loss: 6.8922	Iteration 17/1000, Loss: 0.9680
Iteration 2/1000, Loss: 5.6614	Iteration 18/1000, Loss: 0.9347
Iteration 3/1000, Loss: 4.6794	Iteration 19/1000, Loss: 0.9081
Iteration 4/1000, Loss: 3.8960	
Iteration 5/1000, Loss: 3.2710	Iteration 20/1000, Loss: 0.8868
Iteration 6/1000, Loss: 2.7724	Iteration 21/1000, Loss: 0.8698
Iteration 7/1000, Loss: 2.3746	Iteration 22/1000, Loss: 0.8562
Iteration 8/1000, Loss: 2.0572	Iteration 23/1000, Loss: 0.8453
Iteration 9/1000, Loss: 1.8040	Iteration 24/1000, Loss: 0.8366
Iteration 10/1000, Loss: 1.6019	• • •
Iteration 11/1000, Loss: 1.4407	
Iteration 12/1000, Loss: 1.3120	Iteration 997/1000, Loss: 0.7177
Iteration 13/1000, Loss: 1.2093	Iteration 998/1000, Loss: 0.7177
Iteration 14/1000, Loss: 1.1274	Iteration 999/1000, Loss: 0.7176
Iteration 15/1000, Loss: 1.0619	Iteration 1000/1000, Loss: 0.7176

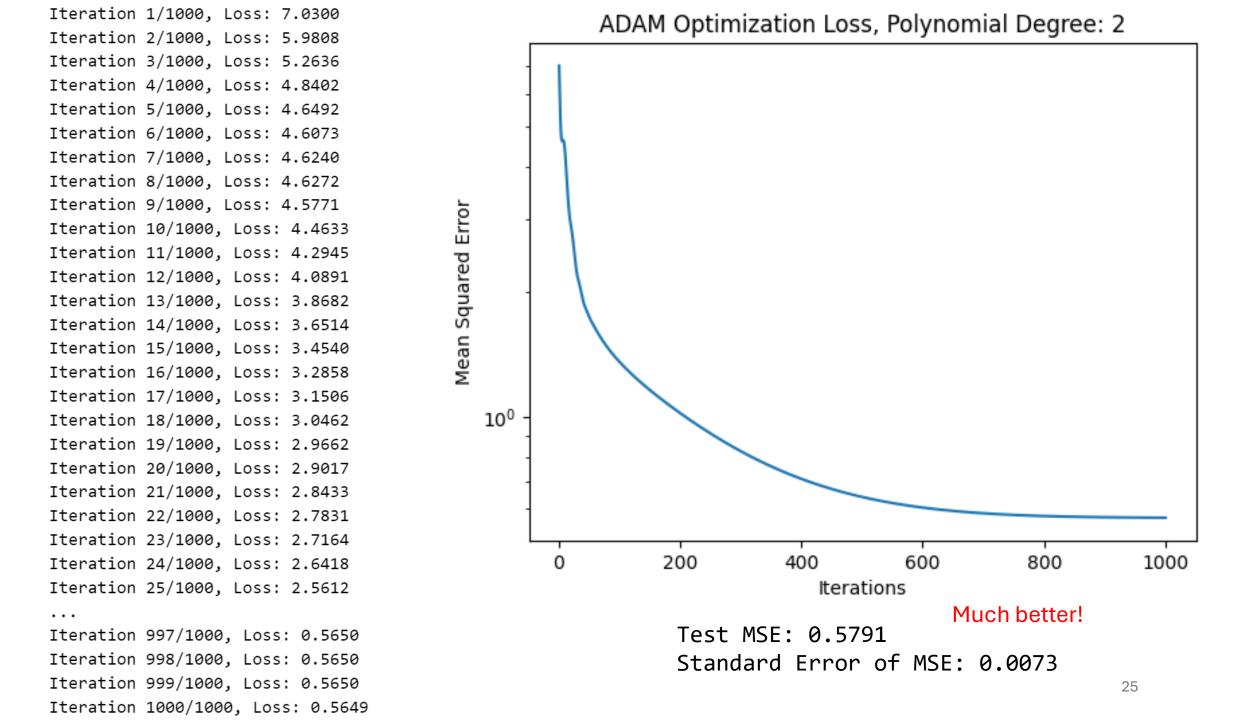
Test MSE: 0.7856 Standard

Error of MSE: 0.0084

Not very good!

Least Squares with Linear Parametric Model

- Question: Why was the final MSE so large (0.78)?
 - Other methods achieved ~0.57
- Answer:
 - Better weights likely exist!
 - Gradient descent was making very slow progress at the end.
- Idea: Let's try using an adaptive step size method, ADAM.



End

