COMPSCI 389
Introduction to Machine Learning

Gradient Descent
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Optimization Perspective

* Recall:
argmin,, L(w, D)

* Viewing L(w, D) as a function, f, of just the weights (and a fixed data set):
argmin,, f(w)

* Note that this is equivalent to maximizing a different function, where g = —f
argmax,, g(w)

* We could also write x instead of w:
argmin,, f(x)

* The function being optimized (minimized or maximized) is called the
objective function (optimization terminology).

* Inthis case, our objective function is a loss function (machine learning terminology).
* Question: How do we find the input that minimizes a function?

Local Search Methods

e Start with some initial input, x,
* Search for a nearby input, x;, that decreases f:

f(x1) < f(xo)
* Repeat, finding a nearby input x;, ; that decreases f (for each
iteration i):
flxiv1) < fx;)
* Stop when:

* You cannot find a new input that decreases f
* The decrease in f becomes very small
* The process runs for some predetermined amount of time

* Called “local search methods” because they search locally
around some current point, x;.

“Find a nearby point that decreases f”

* We will consider gradient-based optimizers.

* At any input/point x, we can query:

* f(x): The value of the objective function at the point
df (x)

dx
* This is the gradient, and is also written as Vf (x)

: The derivative of the objective function at the point

Question: Is a global minimum a local minimum?
Answer: Yes!

200

150 ~

100 A

=
30 A
0- f
T ‘ T T T T T T T T
0 1 2 3 4 5 6 7 8
" 1
Global minimum: A location where the function Local minimum: A location where all nearby

achieves the lowest value (the argmin). (adjacent) points have higher values. :

200

150 ~

100 -

fix

Question: How can we find a point x;,; such that f(x;,,) < f(x;)? Thatis, a point that is “lower”? ;
Idea: Move a small amount “downhill”

200

150 ~

100

fix)

50 A

Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease x; to get x;, ;. Negative slope: Increase x; to get x; 4.

Gradient Descent

000000000

* Take a step of length a (a small positive constant) in the opposite
direction of the slope:
Xiy1 = X; — a X slope.
df (x)

dx

, SO We can write:

df (x)
dx
* o is a hyperparameter called the step size or learning rate.

* Note: The slope is

Xiv1 = X — &

Gradientdescent, x, = 7, a = 0.001
f(x) = x* —14x3 + 60x° — 70x

200

50 ~

T T T T T T T T T
0 1 P 3 4 5 6 7 8

Question: Why do the points get closer together when we use the same step size, a?

Why do the points get closer together when
we use the same step size, a?

df()
dx

Xi+1 = Xj — &

* As x; approaches a local optimum, the slope goes to zero.
* This allows for “convergence” to a local optimum.
* Gradient descent can still overshoot the (local) minimum.

* |If the step size is small enough (or decayed appropriately over
time), gradient descent is guaranteed to converge to a local
minimum.

* |[f it overshoots a minimum by a small amount, it will reverse direction and
move back towards the minimum.

10

Overshooting and Divergence

* |If the step length was constant and too big, it could forever over-
shoot the (local) minimum, diverging or oscillating (not making
progress towards the local minimum).

fix)

11

Multidimensional Gradient Descent

* What if the function, f, takes many inputs?

* Ourloss function, L(w, D) takes the weight vector w as input
 We view D as fixed.

* For now, consider a function f(x,y), where x and y are two real numbers.

12

13

Consider the point (3,3)

Question: How can we find a new
point that is “downhill”?

Idea: Compute the slope along
each axis!

x-slope: 9fxy)

ox
af (x,y)

y-slope: 3y

The gradient is the concatenation
of the slopes along each
dimension/axis:
VFGo) = laf (x,y) 9f (x,y)
ox ' 0y

14

The Gradient

Question: How can we find a new
point that is “downhill”?

Idea: Compute the slope along
each axis!

x-slope: 9fxy)

ox
af (x,y)

y-slope: 3y

The gradient is the concatenation
of the slopes along each
dimension/axis:
VFGo) = laf (x,y) 9f (x,y)
ox ' 0y

Note: The gradient is also called
the “direction of steepest
ascent”. [t indicates how to
change each input to go up-hill as
quickly as possible.

Gradient Descent: Move both x
and y in the negative direction of
their slopes. Thatis, move in the
opposite direction of the gradient:

o
1+1 l axl
g)
1+1 l ayl
OR

(Xi+1, Yi+1) = (x5, ¥1) — aVEX, yi)

Gradient Descenton f(x,y) = x? + yz
(XO, yO) — (3,3), a -: 0.7

Pseudocode: Gradient Descent on f (x)

* Hyperparameter: Step size a. Typically a small constant like
0.1,0.01, 0.001, ...

* Assumption: f is a function that takes a vector (or single real number)
as input and produces a single real number as output.

* Assumption: f is smooth (differentiable)
* Method:

* Select an arbitrary initial point, x, (a vector).
* For each iteration i, set x;,; = x; — aVf(x;). Equivalently, for each element of x;

(indexed by j):
af (x;)

axi ;
J
* Stop when progress becomes slow or after some fixed amount of time.

Xi+1,j = Xij — &

17

Gradient Descent: Adaptive Step Sizes

* Tuning the step size, a, can be challenging.

* Adaptive step size methods measure properties of the function
over time to adapt the step size automatically.
* Many methods (ADAGRAD, ADAM, etc.)
* Some change not only the length of the step, but also the direction of the
step!
* Details beyond the scope of this course.

18

Gradient Descent for Minimizing Sample MSE
(Linear Parametric Model)
argmin,, L(w, D)

* Initialize wy arbitrarily.
* Iterate:

aL(Wl,D)
Wit1 < W — Q& ow,
* Equivalently, for each weight (indexed by j):
aL(Wl,D)
1+1,) L] aWi,j
dL(w;,D)

* To implement this, we need to know T
L]

19

n d
. 1
What is 22262y vy =23 = 57w
. . i'=1 j'=1
ow; j)]
Question: Why X,/ rather Yi' — Z WL,]’¢]’(xl’)
than Zj? j ;1 .

Answer: We already used

the symbol j to denote the anJ Tli 1 aWU 7 —
weight we are taking the n d d
e i oL(w;,D) 1 9]
derivative with respect to. L _ ’)) 2 2
= —] — W: 1@ 1\ X:/ ! — W -1 I\X;/
So, we use a different an.j n Z i . L] (15] (L) aWij Vi Ve L] ('bj (L)
symbol for the index of the i'= \ j'= g d] =1
summation. oL(w;,D) -1 z , 5 (o) 0 B0 Ge)
p— yi’ —_ z Wi," ./ _Xl-/ Z Wi," ! xl’
an',j n = = J an',j e J

n

d
dL(w;, D —1
(W) — z 2 Vil — z Wi’j’(,bj’(xi') ('bj(xi')
=1

ow; ; n
b i'=1

0
ow

. 20
L]

d

d
B z wy jrdjr(x;r) = . Wi ¢j(x;ir) = ¢ (x;r)
Lj = w

Gradient Descent for Minimizing Sample MSE

(Linear Parametric Model)
* For each weight (indexed by j):

aL(Wl,D)
Wit,j < Wij — @ ow;
L,J
* Where:
dL(w;, D) 1w d
L —
o = D27) Wy e | oy
' i=1 j'=1
* So, for each weight (indexed by j):

n

d
1
Wit1); < Wit 3—2 2 yi — Wi,j’¢j’(xi)> ¢j(x;)
=1 j'=1

i/

S

21

GPA Data set

Gradient Descent Loss, Polynomial Degree: 2

Mean Squared Error

lDI} i

|
200

|
400

]
600
lterations

|
800

|
1000

22

Iteration ©/1000, Loss: 8.4351 Iteration 16/1000, Loss: 1.0097
[teratlon 1/1006, Loss: 6.8922 Iteration 17/1000, Loss: ©.9680
Iteration 2/1600, Loss: 5.6614 Tteration 18/1000, Loss: 0.9347
Iteration 3/1000, Loss: 4.6794 .

Iteration 4/1000, Loss: 3.8960 Iteration 19/1000, Loss: 0.9081
Iteration 5/1000, Loss: 3.2710 Iteration 2@/1@@@, Loss: 0.8868
Iteration 6/1000, Loss: 2.7724 Iteration 21/1000, Loss: 0.8698
Iteration 7/1000, Loss: 2.3746 Iteration 22/1000, Loss: ©.8562
Iteration 8/1600, Loss: 2.8572 Iteration 23/1000, Loss: 0.8453
Iteration 9/1000, Loss: 1.8046 Tteration 24/1000, Loss: ©.8366
Iteration 10/1000, Loss: 1.6019

Iteration 11/1000, Loss: 1.4407 N

Tteration 12/1000, Loss: 1.3120 Iteration 997/1000, Loss: ©.7177
Iteration 13/1000, Loss: 1.2093 Iteration 998/1000, Loss: 0.7177
Iteration 14/1000, Loss: 1.1274 Iteration 999/1000, Loss: 0.7176
Iteration 15/1600, Loss: 1.0619 Iteration 1000/1000, Loss: ©.7176

— Not very good!
Test MSE: 0.7856 Standard

Error of MSE: 0.0084

Least Squares with Linear Parametric Model

* Question: Why was the final MSE so large (0.78)?
e Other methods achieved ~0.57

* Answer:
* Better weights likely exist!
* Gradient descent was making very slow progress at the end.

* ldea: Let’s try using an adaptive step size method, ADAM.

24

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

Iteration
Iteration
Iteration
Iteration

1/1000, Loss:
2/1000, Loss:
3/10ee, Loss:
4/1600, Loss:
5/1008, Loss:
6/1000, Loss:
7/1000, Loss:
8/1000, Loss:
9/1000, Loss:

10/1000, Loss:
11/10009, Loss:
12/1000, Loss:
13/1000, Loss:
14/1000, Loss:
15/1000, Loss:
16/1000, Loss:
17/1000, Loss:
18/1000, Loss:
19/1000, Loss:
20/1000, Loss:
21/10009, Loss:
22/1000, Loss:
23/1000, Loss:
24/1000, Loss:
25/1000, Loss:

997/1000, Loss: ©.5650
998/1000, Loss: ©.5650
999/1000, Loss: ©.5650
1000/1000, Loss: ©.5649

PP B PR B B v

.0300
. 9808
.2636
. 8402
.6492
.6073
.6240
.6272
.5771

NN RN RN RNRNNWWWWWWR BB

.4633
.2945
.0891
.8682
.6514
.4540
.2858
.1506
.0462
.9662
.9017
.8433
.7831
.7164
.6418
.5612

Mean Squared Error

10°

ADAM Optimization Loss, Polynomial Degree: 2

1 1
200 400

Test MSE:

1
600

terations

©.5791
Standard Error of MSE:

!
800
Much better!

0.0073

25

I
1000

Serating

Thank you.

Degginmenic

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Optimization Perspective
	Slide 3: Local Search Methods
	Slide 4: “Find a nearby point that decreases f”
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Gradient Descent
	Slide 9: Gradient descent, x sub 0 equals 7, alpha equals 0.001 f of x , equals x to the fourth minus 14 x cubed plus 60 x squared minus 70 x
	Slide 10: Why do the points get closer together when we use the same step size, alpha?
	Slide 11: Overshooting and Divergence
	Slide 12: Multidimensional Gradient Descent
	Slide 13: f open paren x ,y , close paren equals x squared plus y squared
	Slide 14: Consider the point open paren 3,3 close paren
	Slide 15: The Gradient
	Slide 16: Gradient Descent on f open paren x ,y , close paren equals x squared plus y squared open paren x sub 0,y sub 0 , , close paren equals open paren 3,3 close paren , alpha equals 0.7
	Slide 17: Pseudocode: Gradient Descent on f open paren x close paren
	Slide 18: Gradient Descent: Adaptive Step Sizes
	Slide 19: Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)
	Slide 20: What is numerator , partial cap L open paren w sub i. ,cap D close paren end numerator , over denominator , partial w sub , i. ,j end subscript , end denominator ?
	Slide 21: Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)
	Slide 22
	Slide 23
	Slide 24: Least Squares with Linear Parametric Model
	Slide 25
	Slide 26: End

