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Optimization Perspective

• Recall:
argmin𝑤 𝐿 𝑤, 𝐷

• Viewing 𝐿(𝑤, 𝐷) as a function, 𝑓, of just the weights (and a fixed data set):
argmin𝑤 𝑓 𝑤

• Note that this is equivalent to maximizing a different function, where 𝑔 = −𝑓
argmax𝑤 𝑔 𝑤

• We could also write 𝑥 instead of 𝑤:
argmin𝑥 𝑓 𝑥

• The function being optimized (minimized or maximized) is called the 
objective function (optimization terminology).
• In this case, our objective function is a loss function (machine learning terminology).

• Question: How do we find the input that minimizes a function?
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Local Search Methods

• Start with some initial input, 𝑥0

• Search for a nearby input, 𝑥1, that decreases 𝑓:
𝑓 𝑥1 < 𝑓 𝑥0

• Repeat, finding a nearby input 𝑥𝑖+1 that decreases 𝑓 (for each 
iteration 𝑖):

𝑓 𝑥𝑖+1 < 𝑓 𝑥𝑖

• Stop when:
• You cannot find a new input that decreases 𝑓
• The decrease in 𝑓 becomes very small
• The process runs for some predetermined amount of time

• Called “local search methods” because they search locally 
around some current point, 𝑥𝑖. 3



“Find a nearby point that decreases 𝑓”

• We will consider gradient-based optimizers.
• At any input/point 𝑥, we can query:

• 𝑓 𝑥 : The value of the objective function at the point

•
𝑑𝑓(𝑥)

𝑑𝑥
: The derivative of the objective function at the point

• This is the gradient, and is also written as ∇𝑓(𝑥)
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Local minimum: A location where all nearby 
(adjacent) points have higher values.

Global minimum: A location where the function 
achieves the lowest value (the argmin). 

Question: Is a global minimum a local minimum?
Answer: Yes!
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𝑥𝑖 = 7

Question: How can we find a point 𝑥𝑖+1 such that 𝑓 𝑥𝑖+1 < 𝑓 𝑥𝑖 ? That is, a point that is “lower”?
Idea: Move a small amount “downhill”
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Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease 𝑥𝑖  to get 𝑥𝑖+1. Negative slope: Increase 𝑥𝑖  to get 𝑥𝑖+1.
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Gradient Descent

• Take a step of length 𝛼 (a small positive constant) in the opposite 
direction of the slope:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼 × slope.

• Note: The slope is 𝑑𝑓(𝑥)

𝑑𝑥
, so we can write:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼
𝑑𝑓(𝑥)

𝑑𝑥
.

• 𝛼 is a hyperparameter called the step size or learning rate.
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Gradient descent, 𝑥0 = 7, 𝛼 = 0.001
𝑓 𝑥 = 𝑥4 − 14𝑥3 + 60𝑥2 − 70𝑥

Question: Why do the points get closer together when we use the same step size, 𝛼?9



Why do the points get closer together when 
we use the same step size, 𝛼?

𝑥𝑖+1 = 𝑥𝑖 − 𝛼
𝑑𝑓(𝑥)

𝑑𝑥
• As 𝑥𝑖  approaches a local optimum, the slope goes to zero.
• This allows for “convergence” to a local optimum.
• Gradient descent can still overshoot the (local) minimum.
• If the step size is small enough (or decayed appropriately over 

time), gradient descent is guaranteed to converge to a local 
minimum.
• If it overshoots a minimum by a small amount, it will reverse direction and 

move back towards the minimum.
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Overshooting and Divergence

• If the step length was constant and too big, it could forever over-
shoot the (local) minimum, diverging or oscillating (not making 
progress towards the local minimum).
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Multidimensional Gradient Descent

• What if the function, 𝑓, takes many inputs?
• Our loss function,  𝐿(𝑤, 𝐷) takes the weight vector 𝑤 as input

• We view 𝐷 as fixed.
• For now, consider a function 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are two real numbers.
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𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 
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Consider the point (3,3)

Question: How can we find a new 
point that is “downhill”?

Idea: Compute the slope along 
each axis!

𝑥-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑥

𝑦-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑦

The gradient is the concatenation 
of the slopes along each 
dimension/axis:

∇𝑓 𝑥 =
𝜕𝑓 𝑥, 𝑦

𝜕𝑥
,
𝜕𝑓 𝑥, 𝑦

𝜕𝑦
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The Gradient

Question: How can we find a new 
point that is “downhill”?

Idea: Compute the slope along 
each axis!

𝑥-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑥

𝑦-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑦

The gradient is the concatenation 
of the slopes along each 
dimension/axis:

∇𝑓 𝑥 =
𝜕𝑓 𝑥, 𝑦

𝜕𝑥
,
𝜕𝑓 𝑥, 𝑦

𝜕𝑦

Note: The gradient is also called 
the “direction of steepest 
ascent”. It indicates how to 
change each input to go up-hill as 
quickly as possible.

Gradient Descent: Move both 𝑥 
and 𝑦 in the negative direction of 
their slopes. That is, move in the 
opposite direction of the gradient:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼
𝜕𝑓 𝑥𝑖 , 𝑦𝑖

𝜕𝑥𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝛼
𝜕𝑓 𝑥𝑖 , 𝑦𝑖

𝜕𝑦𝑖

OR
𝑥𝑖+1, 𝑦𝑖+1 = 𝑥𝑖 , 𝑦𝑖 − 𝛼∇𝑓(𝑥𝑖 , 𝑦𝑖)15



Gradient Descent on 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2

𝑥0, 𝑦0 = (3,3), 𝛼 = 0.7
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Pseudocode: Gradient Descent on 𝑓(𝑥)

• Hyperparameter: Step size 𝛼. Typically a small constant like 
0.1, 0.01, 0.001, …

• Assumption: 𝑓 is a function that takes a vector (or single real number) 
as input and produces a single real number as output.

• Assumption: 𝑓 is smooth (differentiable)
• Method:

• Select an arbitrary initial point, 𝑥0 (a vector).
• For each iteration 𝑖, set 𝑥𝑖+1 = 𝑥𝑖 − 𝛼∇𝑓 𝑥𝑖 . Equivalently, for each element of 𝑥𝑖  

(indexed by 𝑗):

𝑥𝑖+1,𝑗 = 𝑥𝑖,𝑗 − 𝛼
𝜕𝑓 𝑥𝑖

𝜕𝑥𝑖,𝑗

• Stop when progress becomes slow or after some fixed amount of time.

17



Gradient Descent: Adaptive Step Sizes

• Tuning the step size, 𝛼, can be challenging.
• Adaptive step size methods measure properties of the function 

over time to adapt the step size automatically.
• Many methods (ADAGRAD, ADAM, etc.)
• Some change not only the length of the step, but also the direction of the 

step!
• Details beyond the scope of this course.
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Gradient Descent for Minimizing Sample MSE 
(Linear Parametric Model)

argmin𝑤 𝐿 𝑤, 𝐷

• Initialize 𝑤0 arbitrarily.
• Iterate:

𝑤𝑖+1 ← 𝑤𝑖 − 𝛼
𝜕𝐿(𝑤𝑖 , 𝐷)

𝜕𝑤𝑖

• Equivalently, for each weight (indexed by 𝑗):

𝑤𝑖+1,𝑗 ← 𝑤𝑖,𝑗 − 𝛼
𝜕𝐿(𝑤𝑖 , 𝐷)

𝜕𝑤𝑖,𝑗

• To implement this, we need to know 𝜕𝐿(𝑤𝑖,𝐷)

𝜕𝑤𝑖,𝑗
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What is 𝜕𝐿(𝑤𝑖,𝐷)

𝜕𝑤𝑖,𝑗
? 𝐿 𝑤𝑖 , 𝐷 =

1

𝑛
෍

𝑖′=1

𝑛

𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

2

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

𝜕

𝜕𝑤𝑖,𝑗

1

𝑛
෍

𝑖′=1

𝑛

𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

2

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

1

𝑛
෍

𝑖′=1

𝑛
𝜕

𝜕𝑤𝑖,𝑗
𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

2

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

1

𝑛
෍

𝑖′=1

𝑛

2 𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′
𝜕

𝜕𝑤𝑖,𝑗
𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

−1

𝑛
෍

𝑖′=1

𝑛

2 𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′
𝜕

𝜕𝑤𝑖,𝑗
෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

−1

𝑛
෍

𝑖′=1

𝑛

2 𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′ 𝜙𝑗 𝑥𝑖′

Question: Why Σ𝑗′  rather 
than Σ𝑗?

Answer: We already used 
the symbol 𝑗 to denote the 
weight we are taking the 
derivative with respect to. 
So, we use a different 
symbol for the index of the 
summation.
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𝜕

𝜕𝑤𝑖,𝑗
෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′ =
𝜕

𝜕𝑤𝑖,𝑗
𝑤𝑖,𝑗 𝜙𝑗 𝑥𝑖′ = 𝜙𝑗 𝑥𝑖′



Gradient Descent for Minimizing Sample MSE 
(Linear Parametric Model)
• For each weight (indexed by 𝑗):

𝑤𝑖+1,𝑗 ← 𝑤𝑖,𝑗 − 𝛼
𝜕𝐿(𝑤𝑖 , 𝐷)

𝜕𝑤𝑖,𝑗

• Where:
𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

−1

𝑛
෍

𝑖=1

𝑛

2 𝑦𝑖 − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖 𝜙𝑗 𝑥𝑖

• So, for each weight (indexed by 𝑗):

𝑤𝑖+1,𝑗 ← 𝑤𝑖,𝑗 + 𝛼
1

𝑛
෍

𝑖=1

𝑛

2 𝑦𝑖 − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖 𝜙𝑗 𝑥𝑖

21



22

GPA Data set



Iteration 0/1000, Loss: 8.4351 

Iteration 1/1000, Loss: 6.8922

Iteration 2/1000, Loss: 5.6614 

Iteration 3/1000, Loss: 4.6794 

Iteration 4/1000, Loss: 3.8960 

Iteration 5/1000, Loss: 3.2710

Iteration 6/1000, Loss: 2.7724 

Iteration 7/1000, Loss: 2.3746 

Iteration 8/1000, Loss: 2.0572 

Iteration 9/1000, Loss: 1.8040 

Iteration 10/1000, Loss: 1.6019 

Iteration 11/1000, Loss: 1.4407 

Iteration 12/1000, Loss: 1.3120 

Iteration 13/1000, Loss: 1.2093 

Iteration 14/1000, Loss: 1.1274

Iteration 15/1000, Loss: 1.0619 

Iteration 16/1000, Loss: 1.0097 

Iteration 17/1000, Loss: 0.9680 

Iteration 18/1000, Loss: 0.9347 

Iteration 19/1000, Loss: 0.9081 

Iteration 20/1000, Loss: 0.8868 

Iteration 21/1000, Loss: 0.8698 

Iteration 22/1000, Loss: 0.8562 

Iteration 23/1000, Loss: 0.8453 

Iteration 24/1000, Loss: 0.8366

...

Iteration 997/1000, Loss: 0.7177 

Iteration 998/1000, Loss: 0.7177 

Iteration 999/1000, Loss: 0.7176 

Iteration 1000/1000, Loss: 0.7176

Test MSE: 0.7856 Standard 
Error of MSE: 0.0084

Not very good!
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Least Squares with Linear Parametric Model

• Question: Why was the final MSE so large (0.78)?
• Other methods achieved ~0.57

• Answer:
• Better weights likely exist!
• Gradient descent was making very slow progress at the end.

• Idea: Let’s try using an adaptive step size method, ADAM.
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Test MSE: 0.5791 
Standard Error of MSE: 0.0073

Much better!
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End
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