
COMPSCI 389
Introduction to Machine Learning

Gradient Descent
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

1

Optimization Perspective

• Recall:
argmin𝑤 𝐿 𝑤, 𝐷

• Viewing 𝐿(𝑤, 𝐷) as a function, 𝑓, of just the weights (and a fixed data set):
argmin𝑤 𝑓 𝑤

• Note that this is equivalent to maximizing a different function, where 𝑔 = −𝑓
argmax𝑤 𝑔 𝑤

• We could also write 𝑥 instead of 𝑤:
argmin𝑥 𝑓 𝑥

• The function being optimized (minimized or maximized) is called the
objective function (optimization terminology).
• In this case, our objective function is a loss function (machine learning terminology).

• Question: How do we find the input that minimizes a function?

2

Local Search Methods

• Start with some initial input, 𝑥0

• Search for a nearby input, 𝑥1, that decreases 𝑓:
𝑓 𝑥1 < 𝑓 𝑥0

• Repeat, finding a nearby input 𝑥𝑖+1 that decreases 𝑓 (for each
iteration 𝑖):

𝑓 𝑥𝑖+1 < 𝑓 𝑥𝑖

• Stop when:
• You cannot find a new input that decreases 𝑓
• The decrease in 𝑓 becomes very small
• The process runs for some predetermined amount of time

• Called “local search methods” because they search locally
around some current point, 𝑥𝑖. 3

“Find a nearby point that decreases 𝑓”

• We will consider gradient-based optimizers.
• At any input/point 𝑥, we can query:

• 𝑓 𝑥 : The value of the objective function at the point

•
𝑑𝑓(𝑥)

𝑑𝑥
: The derivative of the objective function at the point

• This is the gradient, and is also written as ∇𝑓(𝑥)

4

Local minimum: A location where all nearby
(adjacent) points have higher values.

Global minimum: A location where the function
achieves the lowest value (the argmin).

Question: Is a global minimum a local minimum?
Answer: Yes!

5

𝑥𝑖 = 7

Question: How can we find a point 𝑥𝑖+1 such that 𝑓 𝑥𝑖+1 < 𝑓 𝑥𝑖 ? That is, a point that is “lower”?
Idea: Move a small amount “downhill”

6

Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease 𝑥𝑖 to get 𝑥𝑖+1. Negative slope: Increase 𝑥𝑖 to get 𝑥𝑖+1.

7

Gradient Descent

• Take a step of length 𝛼 (a small positive constant) in the opposite
direction of the slope:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼 × slope.

• Note: The slope is 𝑑𝑓(𝑥)

𝑑𝑥
, so we can write:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼
𝑑𝑓(𝑥)

𝑑𝑥
.

• 𝛼 is a hyperparameter called the step size or learning rate.

8

Gradient descent, 𝑥0 = 7, 𝛼 = 0.001
𝑓 𝑥 = 𝑥4 − 14𝑥3 + 60𝑥2 − 70𝑥

Question: Why do the points get closer together when we use the same step size, 𝛼?9

Why do the points get closer together when
we use the same step size, 𝛼?

𝑥𝑖+1 = 𝑥𝑖 − 𝛼
𝑑𝑓(𝑥)

𝑑𝑥
• As 𝑥𝑖 approaches a local optimum, the slope goes to zero.
• This allows for “convergence” to a local optimum.
• Gradient descent can still overshoot the (local) minimum.
• If the step size is small enough (or decayed appropriately over

time), gradient descent is guaranteed to converge to a local
minimum.
• If it overshoots a minimum by a small amount, it will reverse direction and

move back towards the minimum.

10

Overshooting and Divergence

• If the step length was constant and too big, it could forever over-
shoot the (local) minimum, diverging or oscillating (not making
progress towards the local minimum).

11

Multidimensional Gradient Descent

• What if the function, 𝑓, takes many inputs?
• Our loss function, 𝐿(𝑤, 𝐷) takes the weight vector 𝑤 as input

• We view 𝐷 as fixed.
• For now, consider a function 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are two real numbers.

12

𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2

13

Consider the point (3,3)

Question: How can we find a new
point that is “downhill”?

Idea: Compute the slope along
each axis!

𝑥-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑥

𝑦-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑦

The gradient is the concatenation
of the slopes along each
dimension/axis:

∇𝑓 𝑥 =
𝜕𝑓 𝑥, 𝑦

𝜕𝑥
,
𝜕𝑓 𝑥, 𝑦

𝜕𝑦

14

The Gradient

Question: How can we find a new
point that is “downhill”?

Idea: Compute the slope along
each axis!

𝑥-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑥

𝑦-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑦

The gradient is the concatenation
of the slopes along each
dimension/axis:

∇𝑓 𝑥 =
𝜕𝑓 𝑥, 𝑦

𝜕𝑥
,
𝜕𝑓 𝑥, 𝑦

𝜕𝑦

Note: The gradient is also called
the “direction of steepest
ascent”. It indicates how to
change each input to go up-hill as
quickly as possible.

Gradient Descent: Move both 𝑥
and 𝑦 in the negative direction of
their slopes. That is, move in the
opposite direction of the gradient:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼
𝜕𝑓 𝑥𝑖 , 𝑦𝑖

𝜕𝑥𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝛼
𝜕𝑓 𝑥𝑖 , 𝑦𝑖

𝜕𝑦𝑖

OR
𝑥𝑖+1, 𝑦𝑖+1 = 𝑥𝑖 , 𝑦𝑖 − 𝛼∇𝑓(𝑥𝑖 , 𝑦𝑖)15

Gradient Descent on 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2

𝑥0, 𝑦0 = (3,3), 𝛼 = 0.7

16

Pseudocode: Gradient Descent on 𝑓(𝑥)

• Hyperparameter: Step size 𝛼. Typically a small constant like
0.1, 0.01, 0.001, …

• Assumption: 𝑓 is a function that takes a vector (or single real number)
as input and produces a single real number as output.

• Assumption: 𝑓 is smooth (differentiable)
• Method:

• Select an arbitrary initial point, 𝑥0 (a vector).
• For each iteration 𝑖, set 𝑥𝑖+1 = 𝑥𝑖 − 𝛼∇𝑓 𝑥𝑖 . Equivalently, for each element of 𝑥𝑖

(indexed by 𝑗):

𝑥𝑖+1,𝑗 = 𝑥𝑖,𝑗 − 𝛼
𝜕𝑓 𝑥𝑖

𝜕𝑥𝑖,𝑗

• Stop when progress becomes slow or after some fixed amount of time.

17

Gradient Descent: Adaptive Step Sizes

• Tuning the step size, 𝛼, can be challenging.
• Adaptive step size methods measure properties of the function

over time to adapt the step size automatically.
• Many methods (ADAGRAD, ADAM, etc.)
• Some change not only the length of the step, but also the direction of the

step!
• Details beyond the scope of this course.

18

Gradient Descent for Minimizing Sample MSE
(Linear Parametric Model)

argmin𝑤 𝐿 𝑤, 𝐷

• Initialize 𝑤0 arbitrarily.
• Iterate:

𝑤𝑖+1 ← 𝑤𝑖 − 𝛼
𝜕𝐿(𝑤𝑖 , 𝐷)

𝜕𝑤𝑖

• Equivalently, for each weight (indexed by 𝑗):

𝑤𝑖+1,𝑗 ← 𝑤𝑖,𝑗 − 𝛼
𝜕𝐿(𝑤𝑖 , 𝐷)

𝜕𝑤𝑖,𝑗

• To implement this, we need to know 𝜕𝐿(𝑤𝑖,𝐷)

𝜕𝑤𝑖,𝑗

19

What is 𝜕𝐿(𝑤𝑖,𝐷)

𝜕𝑤𝑖,𝑗
? 𝐿 𝑤𝑖 , 𝐷 =

1

𝑛
෍

𝑖′=1

𝑛

𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

2

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

𝜕

𝜕𝑤𝑖,𝑗

1

𝑛
෍

𝑖′=1

𝑛

𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

2

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

1

𝑛
෍

𝑖′=1

𝑛
𝜕

𝜕𝑤𝑖,𝑗
𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

2

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

1

𝑛
෍

𝑖′=1

𝑛

2 𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′
𝜕

𝜕𝑤𝑖,𝑗
𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

−1

𝑛
෍

𝑖′=1

𝑛

2 𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′
𝜕

𝜕𝑤𝑖,𝑗
෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′

𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

−1

𝑛
෍

𝑖′=1

𝑛

2 𝑦𝑖′ − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′ 𝜙𝑗 𝑥𝑖′

Question: Why Σ𝑗′ rather
than Σ𝑗?

Answer: We already used
the symbol 𝑗 to denote the
weight we are taking the
derivative with respect to.
So, we use a different
symbol for the index of the
summation.

20

𝜕

𝜕𝑤𝑖,𝑗
෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖′ =
𝜕

𝜕𝑤𝑖,𝑗
𝑤𝑖,𝑗 𝜙𝑗 𝑥𝑖′ = 𝜙𝑗 𝑥𝑖′

Gradient Descent for Minimizing Sample MSE
(Linear Parametric Model)
• For each weight (indexed by 𝑗):

𝑤𝑖+1,𝑗 ← 𝑤𝑖,𝑗 − 𝛼
𝜕𝐿(𝑤𝑖 , 𝐷)

𝜕𝑤𝑖,𝑗

• Where:
𝜕𝐿 𝑤𝑖 , 𝐷

𝜕𝑤𝑖,𝑗
=

−1

𝑛
෍

𝑖=1

𝑛

2 𝑦𝑖 − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖 𝜙𝑗 𝑥𝑖

• So, for each weight (indexed by 𝑗):

𝑤𝑖+1,𝑗 ← 𝑤𝑖,𝑗 + 𝛼
1

𝑛
෍

𝑖=1

𝑛

2 𝑦𝑖 − ෍

𝑗′=1

𝑑

𝑤𝑖,𝑗′𝜙𝑗′ 𝑥𝑖 𝜙𝑗 𝑥𝑖

21

22

GPA Data set

Iteration 0/1000, Loss: 8.4351

Iteration 1/1000, Loss: 6.8922

Iteration 2/1000, Loss: 5.6614

Iteration 3/1000, Loss: 4.6794

Iteration 4/1000, Loss: 3.8960

Iteration 5/1000, Loss: 3.2710

Iteration 6/1000, Loss: 2.7724

Iteration 7/1000, Loss: 2.3746

Iteration 8/1000, Loss: 2.0572

Iteration 9/1000, Loss: 1.8040

Iteration 10/1000, Loss: 1.6019

Iteration 11/1000, Loss: 1.4407

Iteration 12/1000, Loss: 1.3120

Iteration 13/1000, Loss: 1.2093

Iteration 14/1000, Loss: 1.1274

Iteration 15/1000, Loss: 1.0619

Iteration 16/1000, Loss: 1.0097

Iteration 17/1000, Loss: 0.9680

Iteration 18/1000, Loss: 0.9347

Iteration 19/1000, Loss: 0.9081

Iteration 20/1000, Loss: 0.8868

Iteration 21/1000, Loss: 0.8698

Iteration 22/1000, Loss: 0.8562

Iteration 23/1000, Loss: 0.8453

Iteration 24/1000, Loss: 0.8366

...

Iteration 997/1000, Loss: 0.7177

Iteration 998/1000, Loss: 0.7177

Iteration 999/1000, Loss: 0.7176

Iteration 1000/1000, Loss: 0.7176

Test MSE: 0.7856 Standard
Error of MSE: 0.0084

Not very good!

23

Least Squares with Linear Parametric Model

• Question: Why was the final MSE so large (0.78)?
• Other methods achieved ~0.57

• Answer:
• Better weights likely exist!
• Gradient descent was making very slow progress at the end.

• Idea: Let’s try using an adaptive step size method, ADAM.

24

Test MSE: 0.5791
Standard Error of MSE: 0.0073

Much better!

25

End

26

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Optimization Perspective
	Slide 3: Local Search Methods
	Slide 4: “Find a nearby point that decreases f”
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Gradient Descent
	Slide 9: Gradient descent, x sub 0 equals 7, alpha equals 0.001 f of x , equals x to the fourth minus 14 x cubed plus 60 x squared minus 70 x
	Slide 10: Why do the points get closer together when we use the same step size, alpha?
	Slide 11: Overshooting and Divergence
	Slide 12: Multidimensional Gradient Descent
	Slide 13: f open paren x ,y , close paren equals x squared plus y squared
	Slide 14: Consider the point open paren 3,3 close paren
	Slide 15: The Gradient
	Slide 16: Gradient Descent on f open paren x ,y , close paren equals x squared plus y squared open paren x sub 0,y sub 0 , , close paren equals open paren 3,3 close paren , alpha equals 0.7
	Slide 17: Pseudocode: Gradient Descent on f open paren x close paren
	Slide 18: Gradient Descent: Adaptive Step Sizes
	Slide 19: Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)
	Slide 20: What is numerator , partial cap L open paren w sub i. ,cap D close paren end numerator , over denominator , partial w sub , i. ,j end subscript , end denominator ?
	Slide 21: Gradient Descent for Minimizing Sample MSE (Linear Parametric Model)
	Slide 22
	Slide 23
	Slide 24: Least Squares with Linear Parametric Model
	Slide 25
	Slide 26: End

